
Quick Reference Manual for Koko

0. Purpose of KOKO (Kode-Konverter = Code-Converter)

Koko is an extremely fast machine-language search-and-replace DOS program converting a
textfile (oldfile) to a new textfile (newfile) by definable search-and-replace table (codefile),
consisting of 256 1:1 byte equations and up to 1300 m:n equations.

There is no limit on the size of oldfile. The bigger the textfiles, the more efficient is Koko,
compared to wordprocessors, whose search-and-replace function collapses under big files.

1. Two program versions

There are 2 program versions. The faster version is usually sufficient for most applications.

-� KOKO.EXE is faster, but codefile is limited to a maximum of 300 m:n equations

-� KOKOX.EXE is slower, but codefile can comprise up to 1300 m:n equations

2. Command line syntax

koko oldfile newfile codefile /parameter

Example:

koko sanskrit.txt sanskrit.itx ree-itx.skt

would convert oldfile sanskrit.txt to newfile sanskrit.itx using codefile ree-itx.skt

3. Batch processing

The most efficient method of using Koko is by batch processing:

-� Create a directory for oldfiles, e.g. c:\old

-� Create a directory for newfiles, e.g. c:\new

-� Create a directory for Koko program and for the various Koko codefiles, e.g. c:\koko

Create batchfiles such as k.bat etc. with following two lines:

cd\old

for %%f in (*.*) do c:\koko\koko.exe c:\koko\ree-itx.skt c:\old\%%f c:\new\%%f /q

Starting k.bat at DOS prompt would convert all oldfiles in c:\old to newfiles in c:\new using
codefile ree-itx.skt. For another codefile, e.g. csx-itx.skt, the following change would do:

for %%f in (*.*) do c:\koko\koko.exe c:\koko\csx-itx.skt c:\old\%%f c:\new\%%f /q

NB: Koko supports only short DOS-filenames (xxxxxxxx.yyy, 8.3 format), not long file names.

4. Parameters

Parameters can be used to control the conversion process. Some of these are the following:

koko oldfile newfile codefile /v

 converts in ascii mode (default mode) and does not overwrite already existing newfile

koko oldfile newfile codefile /bk

 converts in binary mode (not explained in this quick reference manual)

koko oldfile newfile codefile /q

 converts in ascii mode quietly (fastest mode) and does overwrite already existing newfile

5. Statistics

Koko is supplied with the ready-to-run statistics codefile asc-stat.tab, which is very useful
for analysing files with undocumented oder incompletely documented encodings.

koko asc-stat.tab oldfile newfile /s

generates kokostat.lst and kokostat.srt on the undocumented oldfile revealing what codes
are actually used and how often they are used thus often detecting stray codes.

6. Structure of codefile

The codefile is a plain textfile that can be edited with EDIT.COM or any other ascii editor.
Warning: Never use Winword, which destroys several codes when re-saving plain txt-files.

The overall structure of codefile is as follows:

1.� 1:1 equations (always 256 equations)

2.� Definition of m:n separator (e.g. //)

3.� Definition of decimal code indicator (e.g. &D)

4.� m:n equations (up to 1300 equations)

7. One-to-one equations (1:1)

Koko is supplied with ASC-256.TAB used as the starting point for creating a new codefile
for textfile conversion. Codefile asc-256.tab contains the 256 not-yet-modified 1:1 equations:

000=127
001=001
...
010=010
011=011
012=012
013=013
...
065=A
066=B
067=C
...
254=þ
255=ÿ

To the left of "=" always the 3-digit ascii code number must be used. To the right of "=" you
can use either 3-digit ascii code (this is obligatory for control codes below ascii 032 = space),
or you can use the 1-byte ascii character itself. Some examples:

065=B

066=A

This definition would swap A by B

065=a

066=b

This definition would change A to a and B to b (uppercase/lowercase conversion)

Warning: Koko refuses to work, if 1:1 equations are faulty. There must be always 256 lines
of equations with always 3 digits to the left, and always either 3 digits or 1 byte to the right.
For instances "065=Aa" oder "065=A " (space after A) would not be tolerated by Koko.

8. Removal of unwanted one-byte-codes

The following fragment shows how unwanted codes can be most efficiently removed:

000=127
001=001
...
254=127
255=127
// Definition of m:n separator
&D Definition of decimal code indicator
&D127//

All codes to be removed entirely are redefined as 127, and all unwanted codes marked thus
are then removed with this single m:n definition &D127// replacing them all by nothing.

Important: For conversion of ascii files, the first equation must always be 000=127, because
code 000 is not allowed in textfiles. Conversion of binary files with 000 is not explained here.

9. Definition of m:n separator and decimal code indicator

In the codefile, after the first 256 lines with 1:1 equations, the lines 257 and 258 are reserved
for definition of m:n separator and decimal code indicator. The m:n definitions which follow
must be separated by a unique separator, e.g. // or /-/ or ||| or any other unique sequence,
and for control codes and special ascii codes, the 3-digit decimal code must be preceded by
&D or any other unique sequence indicating that what follows is a 3-digit decimal byte code.

The customary definition is // for separator and &D for decimal code indicator (see above).

10. Simple m:n equations

The application of m:n equations is best illustrated by examples:

Sanscrite//Sanskrit
would replace Sanscrite by Sanskrt

rubbish//
would replace rubbish by nothing. Warning: Watch out that there is no space after //

&D032&D032//&D032
would replace two spaces by one space thus removing unwanted double spaces.

&D032&D013&D010//&D013&D010
would remove space before CR LF (carriage return linefeed)

&D013&D010&D013&D010//&D013&D010
would replace 2 CR LF by 1 CR LF

11. Complex m:n equations

Some textfiles use CR LF, others use LF only. The following tricky equations

&D001// (This removes byte 001 from oldfile, should it be contained there)
&D013&D010//&D001
&D010&D013//&D001
&D013//&D001
&D010//&D001
&D001//&D013&D010

would restore the standard DOS/Windows convention of CR LF (carriage return, linefeed).

Important: In textfiles, paragraphs must be terminated by CR LF or by LF. Otherwise they
are non-textfiles. (For non-textfiles, Koko must be used in binary mode with parameter /bk).

The following tricky equations

|// |
| |//||
 |// |
||//||&D032
||&D032&D032//||&D032
| &D013&D010//|&D013&D010
|| &D013&D010//|&D013D&D010

would standardize dandas at the end of sanskrit lines in a way that there is always one
space before first double || and before first single |, and that there is always one space after
the first double ||, so that Ìloka numbers look good, when converted by itranslator.

The following 1:1 definitions are Ulrich Stiehl's own encodings for Sanskrit transliteration:

192=À
193=Á
194=Â
195=Ã
197=Å
198=Æ
199=Ç
200=È
201=É
202=Ê
203=Ë
204=Ì
205=Í
206=Î
207=Ï

Hence the following m:n equations convert Ulrich Stiehl's own transliteration to itx format:

&D192//A
&D193//I
&D194//U
&D195//R^i
&D197//R^I
&D198//L^i
&D199//~N
&D200//~n
&D201//N
&D202//T
&D203//D

ch//Ch
c//ch

&D204//sh
&D205//Sh
&D206//M
&D207//H

'//.a

The following very complex sequence of equations concatenates Sanskrit ligatures to "_":

&D001Rem01//Ligatures

g ai//g_ai
g au//g_au
g a//g_a
g À//g_À
g i//g_i
g Á//g_Á
g u//g_u
g Â//g_Â
g Ã//g_Ã
g e//g_e
g o//g_o

Ç ai//Ç_ai
Ç au//Ç_au
Ç a//Ç_a
Ç À//Ç_À
Ç i//Ç_i
Ç Á//Ç_Á
Ç u//Ç_u
Ç Â//Ç_Â
Ç Ã//Ç_Ã
Ç e//Ç_e
Ç o//Ç_o

Ë ai//Ë_ai
Ë au//Ë_au
Ë a//Ë_a
Ë À//Ë_À
Ë i//Ë_i
Ë Á//Ë_Á

Ë u//Ë_u
Ë Â//Ë_Â
Ë Ã//Ë_Ã
Ë e//Ë_e
Ë o//Ë_o

d ai//d_ai
d au//d_au
d a//d_a
d À//d_À
d i//d_i
d Á//d_Á
d u//d_u
d Â//d_Â
d Ã//d_Ã
d e//d_e
d o//d_o

n ai//n_ai
n au//n_au
n a//n_a
n À//n_À
n i//n_i
n Á//n_Á
n u//n_u
n Â//n_Â
n Ã//n_Ã
n e//n_e
n o//n_o

b ai//b_ai

b au//b_au
b a//b_a
b À//b_À
b i//b_i
b Á//b_Á
b u//b_u
b Â//b_Â
b Ã//b_Ã
b e//b_e
b o//b_o

m ai//m_ai
m au//m_au
m a//m_a
m À//m_À
m i//m_i
m Á//m_Á
m u//m_u
m Â//m_Â
m Ã//m_Ã
m e//m_e
m o//m_o

y ai//y_ai
y au//y_au
y a//y_a
y À//y_À
y i//y_i
y Á//y_Á
y u//y_u
y Â//y_Â

y Ã//y_Ã
y e//y_e
y o//y_o

r ai//r_ai
r au//r_au
r a//r_a
r À//r_À
r i//r_i
r Á//r_Á
r u//r_u
r Â//r_Â
r Ã//r_Ã
r e//r_e
r o//r_o

v ai//v_ai
v au//v_au
v a//v_a
v À//v_À
v i//v_i
v Á//v_Á
v u//v_u
v Â//v_Â
v Ã//v_Ã
v e//v_e
v o//v_o

etc. etc. etc.
_//

With the final equation _// the underscore is removed and concatenation of ligatures is
effected in transliterated files.

Remarks: For reasons of program speed, Koko does not allow using remarks in codefiles.
However it is possible to define dummy equations as remarks, provided they begin with a
control code that never occurs in oldfile, e.g. "&D001Remark01//Here follows the remark".
To make m:n equations more legible, one blank line is allowed between any two equations.

Swapping requires 3 m:n equations using a control code that is never used in oldfile, e.g.

Nandu//&D001
Ulrich//Nandu
&D001//Ulrich

Note: In the first 256 one-to-one equations of the codefile, swapping is done by program.

Ulrich Stiehl, 11th of February, 2002

