Quick Reference Manual for Koko

0. Purpose of KOKO (Kode-Konverter = Code-Converter)

Koko is an extremely fast machine-language search-and-replace DOS program converting a
textfile (oldfile) to a new textfile (newfile) by definable search-and-replace table (codefile),
consisting of 256 1:1 byte equations and up to 1300 m:n equations.

There is no limit on the size of oldfile. The bigger the textfiles, the more efficient is Koko,
compared to wordprocessors, whose search-and-replace function collapses under big files.

1. Two program versions

There are 2 program versions. The faster version is usually sufficient for most applications.

- KOKO.EXE is faster, but codefile is limited to a maximum of 300 m:n equations

- KOKOX.EXE is slower, but codefile can comprise up to 1300 m:n equations

2. Command line syntax

koko oldfile newfile codefile /parameter
Example:

koko sanskrit.txt sanskrit.itx ree-itx.skt

would convert oldfile sanskrit.txt to newfile sanskrit.itx using codefile ree-itx.skt

3. Batch processing
The most efficient method of using Koko is by batch processing:
- Create a directory for oldfiles, e.g. c:\old
- Create a directory for newfiles, e.g. c:\new
- Create a directory for Koko program and for the various Koko codefiles, e.g. c:\koko
Create batchfiles such as k.bat etc. with following two lines:
cd\old
for % %f in (*.*) do c:\koko\koko.exe c:\koko\ree-itx.skt c:\old\% %f c:\new\% %f /q

Starting k.bat at DOS prompt would convert all oldfiles in c:\old to newfiles in c:\new using
codefile ree-itx.skt. For another codefile, e.g. csx-itx.skt, the following change would do:

for % %f in (*.*) do c:\koko\koko.exe c:\koko\csx-itx.skt c:\old\% %f c:\new\% %f /q

NB: Koko supports only short DOS-filenames (xxxxxxxx.yyy, 8.3 format), not long file names.

4. Parameters
Parameters can be used to control the conversion process. Some of these are the following:
koko oldfile newfile codefile /w

converts in ascii mode (default mode) and does not overwrite already existing newfile
koko oldfile newfile codefile /bk

converts in binary mode (not explained in this quick reference manual)
koko oldfile newfile codefile /q

converts in ascii mode quietly (fastest mode) and does overwrite already existing newfile

5. Statistics

Koko is supplied with the ready-to-run statistics codefile asc-stat.tab, which is very useful
for analysing files with undocumented oder incompletely documented encodings.

koko asc-stat.tab oldfile newfile /s

generates kokostat.lst and kokostat.s¥t on the undocumented oldfile revealing what codes
are actually used and how often they are used thus often detecting stray codes.

6. Structure of codefile

The codefile is a plain textfile that can be edited with EDIT.COM or any other ascii editor.
Warning: Never use Winword, which destroys several codes when re-saving plain txt-files.

The overall structure of codefile is as follows:

1. 1:1 equations (always 256 equations)

2. Definition of m:n separator (e.g. //)

3. Definition of decimal code indicator (e.g. &D)
4

. m:n equations (up to 1300 equations)

7. One-to-one equations (1:1)

Koko is supplied with ASC-256.TAB used as the starting point for creating a new codefile
for textfile conversion. Codefile asc-256.tab contains the 256 not-yet-modified 1:1 equations:

000=127
001=001

010=010
011=011
012=012
013=013

065=A
066=B
067=C
254=p
256=7

To the left of "=" always the 3-digit ascii code number must be used. To the right of "=" you
can use either 3-digit ascii code (this is obligatory for control codes below ascii 032 = space),
or you can use the 1-byte ascii character itself. Some examples:

065=B

066=A

This definition would swap A by B

065=a

066=Db

This definition would change A to a and B to b (uppercase/lowercase conversion)

Warning: Koko refuses to work, if 1:1 equations are faulty. There must be always 256 lines
of equations with always 3 digits to the left, and always either 3 digits or 1 byte to the right.
For instances "065=Aa" oder "065=A " (space after A) would not be tolerated by Koko.

8. Removal of unwanted one-byte-codes
The following fragment shows how unwanted codes can be most efficiently removed:

000=127
001=001

254=127
256=127
// Definition of m:n separator

&D Definition of decimal code indicator
&D127//

All codes to be removed entirely are redefined as 127, and all unwanted codes marked thus
are then removed with this single m:n definition &D127// replacing them all by nothing.

Important: For conversion of ascii files, the first equation must always be 000=127, because
code 000 is not allowed in textfiles. Conversion of binary files with 000 is not explained here.

9. Definition of m:n separator and decimal code indicator

In the codefile, after the first 256 lines with 1:1 equations, the lines 257 and 258 are reserved
for definition of m:n separator and decimal code indicator. The m:n definitions which follow
must be separated by a unique separator, e.g. // or /-/ or lll or any other unique sequence,
and for control codes and special ascii codes, the 3-digit decimal code must be preceded by
&D or any other unique sequence indicating that what follows is a 3-digit decimal byte code.

The customary definition is // for separator and &D for decimal code indicator (see above).

10. Simple m:n equations
The application of m:n equations is best illustrated by examples:

Sanscrite//Sanskrit
would replace Sanscrite by Sanskrt

rubbish//
would replace rubbish by nothing. Warning: Watch out that there is no space after //

&D032&D032//&D032
would replace two spaces by one space thus removing unwanted double spaces.

&D032&D013&D010//&D013&D010
would remove space before CR LF (carriage return linefeed)

&D013&D010&D013&D010//&D013&D010
would replace 2 CR LF by 1 CRLF

11. Complex m:n equations
Some textfiles use CR LF, others use LF only. The following tricky equations

&D001// (This removes byte 001 from oldfile, should it be contained there)
&D013&D010//&D001

&D010&D013//&D001

&D013//&D001

&D010//&D001

&D001//&D013&D010

would restore the standard DOS/Windows convention of CR LF (carriage return, linefeed).

Important: In textfiles, paragraphs must be terminated by CR LF or by LF. Otherwise they
are non-textfiles. (For non-textfiles, Koko must be used in binary mode with parameter /bk).

The following tricky equations

1771
L1/
1771
[1//11&D032
[1&D032&D032//11& D032
| &D013&D010//1&D013&D010
Il &D013&D010//I1&D013D&D010

would standardize dandas at the end of sanskrit lines in a way that there is always one
space before first double Il and before first single |, and that there is always one space after
the first double ll, so that $loka numbers look good, when converted by itranslator.

The following 1:1 definitions are Ulrich Stiehl's own encodings for Sanskrit transliteration:

192=a
193=1
194=u
195=r
197=t
198=1
199=n
200=n
201=n
202=t
203=d
204=5$
205=s
206=m
207=h

Hence the following m:n equations convert Ulrich Stiehl's own transliteration to itx format:

&D192//A
&D193//1
&D194//U0
&D195//RNi
&D197//RN
&D198//LA1
&D199//~N
&D200//~n
&D201//N
&D202//T
&D203//D

ch//Ch
c//ch

&D204//sh
&D205//Sh
&D206//M
&D207//H

‘//.a

The following very complex sequence of equations concatenates Sanskrit ligatures to

&D001Rem01//Ligatures du//d_u b au//b_au yr1//ly_r
du//d_u ba//b_a yelly_e
g ai//g_ai dr//d_r ba//b_a yo/ly_o
g au//g_au de//d_e bi//b_i
gal//g_a do//d_o bi//b_1 r ai//r_ai
gal//g_a bu//b_u r au//r_au
gi//g_i d ai//d_ai b 4//b_u ra//r_a
gl//g_i d au//d_au br//b_r ra//r_a
gu//g_u da//d_a be//b_e ri//r_i
gu//g_u da//d_a b o//b_o ri//r_i
gr//g_r di//d_i ru//r_u
ge//g_e di//d_i m ai//m_ai ria//r_i
go//g_o du//d_u m au//m_au rr//r_r
du//d_u ma//m_a re//r_ e
n ai//n_ai dr//d_r m a//m_a ro//r_o
n au//n_au de//d_e mi//m_i
na//n_a d o//d_o mi//m_i v ai//v_ai
na//n_a m u//m_u v au//v_au
ni//n_i n ai//n_ai m U//m_u val//v_a
ni//n_i n au//n_au mr//m_r val/lv_a
nu//n_u na//n_a me//m_e vi//v_i
nua//n_u na//n_a m o//m_o vi//v_1
nr//n_r ni//n_i vu//v_u
ne//n_e ni//n i y ai//y_ai v u//v_u
no//n_o nu//n_u y au//y_au vri//v_1
nu//n_u yal/ly_a vellv_e
d ai//d_ai nr//n_r yally_a v o//v_o
d au//d_au ne//n_e yi/ly_i
da//d_a n o//n_o yi//y_1 etc. etc. etc.
da//d_a yu/ly_u M
di//d_i b ai//b_ai y U//y_t
di//d_i

With the final equation _// the underscore is removed and concatenation of ligatures is
effected in transliterated files.

Remarks: For reasons of program speed, Koko does not allow using remarks in codefiles.
However it is possible to define dummy equations as remarks, provided they begin with a
control code that never occurs in oldfile, e.g. "&DO001Remark01//Here follows the remark".
To make m:n equations more legible, one blank line is allowed between any two equations.

Swapping requires 3 m:n equations using a control code that is never used in oldfile, e.g.

Nandu//&D001
Ulrich//Nandu
&D001//Ulrich

Note: In the first 256 one-to-one equations of the codefile, swapping is done by program.

Ulrich Stiehl, 11th of February, 2002

